Skip to main content

Router - Load Balancing, Fallbacks

LiteLLM manages:

  • Load-balance across multiple deployments (e.g. Azure/OpenAI)
  • Prioritizing important requests to ensure they don't fail (i.e. Queueing)
  • Basic reliability logic - cooldowns, fallbacks, timeouts and retries (fixed + exponential backoff) across multiple deployments/providers.

In production, litellm supports using Redis as a way to track cooldown server and usage (managing tpm/rpm limits).

info

If you want a server to load balance across different LLM APIs, use our OpenAI Proxy Server

Load Balancing

(s/o @paulpierre and sweep proxy for their contributions to this implementation) See Code

Quick Start

from litellm import Router

model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
}
}]

router = Router(model_list=model_list)

# openai.ChatCompletion.create replacement
response = await router.acompletion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}])

print(response)

Available Endpoints

  • router.completion() - chat completions endpoint to call 100+ LLMs
  • router.acompletion() - async chat completion calls
  • router.embeddings() - embedding endpoint for Azure, OpenAI, Huggingface endpoints
  • router.aembeddings() - async embeddings endpoint
  • router.text_completion() - completion calls in the old OpenAI /v1/completions endpoint format

Advanced

Routing Strategies - Weighted Pick, Rate Limit Aware

Router provides 2 strategies for routing your calls across multiple deployments:

Default Picks a deployment based on the provided Requests per minute (rpm) or Tokens per minute (tpm)

If rpm or tpm is not provided, it randomly picks a deployment

from litellm import Router 
import asyncio

model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"rpm": 900, # requests per minute for this API
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"rpm": 10,
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
"rpm": 10,
}
}]

# init router
router = Router(model_list=model_list, routing_strategy="simple-shuffle")
async def router_acompletion():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
)
print(response)
return response

asyncio.run(router_acompletion())

Basic Reliability

Timeouts

The timeout set in router is for the entire length of the call, and is passed down to the completion() call level as well.

from litellm import Router 

model_list = [{...}]

router = Router(model_list=model_list,
timeout=30) # raise timeout error if call takes > 30s

print(response)

Cooldowns

Set the limit for how many calls a model is allowed to fail in a minute, before being cooled down for a minute.

from litellm import Router

model_list = [{...}]

router = Router(model_list=model_list,
allowed_fails=1) # cooldown model if it fails > 1 call in a minute.

user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]

# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)

print(f"response: {response}")

Retries

For both async + sync functions, we support retrying failed requests.

For RateLimitError we implement exponential backoffs

For generic errors, we retry immediately

Here's a quick look at how we can set num_retries = 3:

from litellm import Router

model_list = [{...}]

router = Router(model_list=model_list,
num_retries=3)

user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]

# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)

print(f"response: {response}")

Fallbacks

If a call fails after num_retries, fall back to another model group.

If the error is a context window exceeded error, fall back to a larger model group (if given).

from litellm import Router

model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]


router = Router(model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
set_verbose=True)


user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]

# normal fallback call
response = router.completion(model="azure/gpt-3.5-turbo", messages=messages)

# context window fallback call
response = router.completion(model="azure/gpt-3.5-turbo-context-fallback", messages=messages)

print(f"response: {response}")

Caching

In production, we recommend using a Redis cache. For quickly testing things locally, we also support simple in-memory caching.

In-memory Cache

router = Router(model_list=model_list, 
cache_responses=True)

print(response)

Redis Cache

router = Router(model_list=model_list, 
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"),
cache_responses=True)

print(response)

Pass in Redis URL, additional kwargs

router = Router(model_list: Optional[list] = None,
## CACHING ##
redis_url=os.getenv("REDIS_URL")",
cache_kwargs= {}, # additional kwargs to pass to RedisCache (see caching.py)
cache_responses=True)

Default litellm.completion/embedding params

You can also set default params for litellm completion/embedding calls. Here's how to do that:

from litellm import Router

fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}

router = Router(model_list=model_list,
default_litellm_params={"context_window_fallback_dict": fallback_dict})

user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]

# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)

print(f"response: {response}")

Deploy Router

If you want a server to load balance across different LLM APIs, use our OpenAI Proxy Server

Queuing (Beta)

Never fail a request due to rate limits

The LiteLLM Queuing endpoints can handle 100+ req/s. We use Celery workers to process requests.

info

This is pretty new, and might have bugs. Any contributions to improving our implementation are welcome

See Code

Quick Start

  1. Add Redis credentials in a .env file
REDIS_HOST="my-redis-endpoint"
REDIS_PORT="my-redis-port"
REDIS_PASSWORD="my-redis-password" # [OPTIONAL] if self-hosted
REDIS_USERNAME="default" # [OPTIONAL] if self-hosted
  1. Start litellm server with your model config
$ litellm --config /path/to/config.yaml --use_queue

Here's an example config for gpt-3.5-turbo

config.yaml (This will load balance between OpenAI + Azure endpoints)

model_list: 
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2 # actual model name
api_key:
api_version: 2023-07-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
  1. Test (in another window) → sends 100 simultaneous requests to the queue
$ litellm --test_async --num_requests 100

Available Endpoints

  • /queue/request - Queues a /chat/completions request. Returns a job id.
  • /queue/response/{id} - Returns the status of a job. If completed, returns the response as well. Potential status's are: queued and finished.

Hosted Request Queing api.litellm.ai

Queue your LLM API requests to ensure you're under your rate limits

  • Step 1: Step 1 Add a config to the proxy, generate a temp key
  • Step 2: Queue a request to the proxy, using your generated_key
  • Step 3: Poll the request

Step 1 Add a config to the proxy, generate a temp key

import requests
import time
import os

# Set the base URL as needed
base_url = "https://api.litellm.ai"

# Step 1 Add a config to the proxy, generate a temp key
# use the same model_name to load balance
config = {
"model_list": [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.environ['OPENAI_API_KEY'],
}
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": "",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_version": "2023-07-01-preview"
}
}
]
}

response = requests.post(
url=f"{base_url}/key/generate",
json={
"config": config,
"duration": "30d" # default to 30d, set it to 30m if you want a temp 30 minute key
},
headers={
"Authorization": "Bearer sk-hosted-litellm" # this is the key to use api.litellm.ai
}
)

print("\nresponse from generating key", response.text)
print("\n json response from gen key", response.json())

generated_key = response.json()["key"]
print("\ngenerated key for proxy", generated_key)

Output

response from generating key {"key":"sk-...,"expires":"2023-12-22T03:43:57.615000+00:00"}

Step 2: Queue a request to the proxy, using your generated_key

print("Creating a job on the proxy")
job_response = requests.post(
url=f"{base_url}/queue/request",
json={
'model': 'gpt-3.5-turbo',
'messages': [
{'role': 'system', 'content': f'You are a helpful assistant. What is your name'},
],
},
headers={
"Authorization": f"Bearer {generated_key}"
}
)
print(job_response.status_code)
print(job_response.text)
print("\nResponse from creating job", job_response.text)
job_response = job_response.json()
job_id = job_response["id"]
polling_url = job_response["url"]
polling_url = f"{base_url}{polling_url}"
print("\nCreated Job, Polling Url", polling_url)

Output

Response from creating job 
{"id":"0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","url":"/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","eta":5,"status":"queued"}

Step 3: Poll the request

while True:
try:
print("\nPolling URL", polling_url)
polling_response = requests.get(
url=polling_url,
headers={
"Authorization": f"Bearer {generated_key}"
}
)
print("\nResponse from polling url", polling_response.text)
polling_response = polling_response.json()
status = polling_response.get("status", None)
if status == "finished":
llm_response = polling_response["result"]
print("LLM Response")
print(llm_response)
break
time.sleep(0.5)
except Exception as e:
print("got exception in polling", e)
break

Output

Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7

Response from polling url {"status":"queued"}

Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7

Response from polling url {"status":"queued"}

Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7

Response from polling url
{"status":"finished","result":{"id":"chatcmpl-8NYRce4IeI4NzYyodT3NNp8fk5cSW","choices":[{"finish_reason":"stop","index":0,"message":{"content":"I am an AI assistant and do not have a physical presence or personal identity. You can simply refer to me as \"Assistant.\" How may I assist you today?","role":"assistant"}}],"created":1700624639,"model":"gpt-3.5-turbo-0613","object":"chat.completion","system_fingerprint":null,"usage":{"completion_tokens":33,"prompt_tokens":17,"total_tokens":50}}}